Our knowledge of the Milky Way has been deeply renewed since a dozen years, following the results of the astrometric satellite HIPPARCOS, and those of large stellar surveys. Many concepts thought to be well established disappeared, to be replaced by others going towards a larger complexity: in particular, the discovery of radial migrations of stars has blurred the simple image that we had of the Galactic disk. There has been large progress in some domains, for instance the physics of the Galactic Center with its super-massive black hole; other problems remain unsolved, such as the nature of the dark matter existing like a halo around our Galaxy.
This book reviews our present knowledge of the Milky Way, in the simplest and most didactic way as possible. Basic notions are always recalled, which make the book accessible to readers without any advanced formation in astronomy. This basic work will be very helpful to understand the results expected from GAIA, the new ESA astrometric satellite launched on December 19, 2013.
]]>
The evolution of nuclear reactors since the 1942 Fermi experiment can be described along the lines of natural history, with an initial flourish of uninhibited creativity followed by a severe selection process leading to a
handful of surviving species, with light water reactors occupying most of the biotope today.
The is book combines four approaches:
All the books of the “Génie Atomique” series have adopted an instructional approach. Initially intended for INSTN’s students, they can be greatly helpful to physicists and engineers involved in the development or operational aspects of nuclear power.
]]>Group action analysis developed and applied mainly by Louis Michel to the study of N-dimensional periodic lattices is the central subject of the book. Different basic mathematical tools currently used for the description of lattice geometry are introduced and illustrated through applications to crystal structures in two- and three-dimensional space, to abstract multi-dimensional lattices and to lattices associated with integrable dynamical systems. Starting from general Delone sets the authors turn to different symmetry and topological classiffications including explicit construction of orbifolds for two- and three-dimensional point and space groups.
Voronoï and Delone cells together with positive quadratic forms and lattice description by root systems are introduced to demonstrate alternative approaches to lattice geometry study. Zonotopes and zonohedral families of 2-, 3-, 4-, 5-dimensional lattices are explicitly visualized using graph theory approach. Along with crystallographic applications, qualitative features of lattices of quantum states appearing for quantum problems associated with classical Hamiltonian integrable dynamical systems are shortly discussed.
The presentation of the material is presented through a number of concrete examples with an extensive use of graphical visualization. The book is aimed at graduated and post-graduate students and young researchers in theoretical physics, dynamical systems, applied mathematics, solid state physics, crystallography, molecular physics, theoretical chemistry, ...
]]>